Addition von Stannylenen an Iminoborane

Peter Paetzold*, Detlef Hahnfeld und Ulli Englert

Institut für Anorganische Chemie der Technischen Hochschule Aachen, Templergraben 55, W-5100 Aachen, F.R.G.

Eingegangen am 6. Dezember 1991

Key Words: Iminoboranes / Stannylenes / Aminostannation

Addition of Stannylenes to Iminoboranes

Iminoboranes $tBuB \equiv NR$ (R = tBu, Mes: **1 a**, **b**) undergo aminostannation by the diaminostannylene $Sn[N(SiMe_3)_2]_2$ (**2 b**) to give $(Me_3Si)_2N - B(tBu) = NR - Sn - N(SiMe_3)_2$ (**4 a**, **b**). The stannylene **4 b** remains monomeric in the crystal (space group

Iminoborane $\mathbf{R}' - \mathbf{B} \equiv \mathbf{N} - \mathbf{R}$ reagieren mit Silylenen Si \mathbf{R}''_2 unter [2 + 1]-Cycloaddition oder unter Bildung anderer Ringe, wobei eine oxidative Addition an das Silylen unter Aufweitung auch der Koordinationszahl des Siliciums von 2 auf 4 eintritt^[1]. Wir versuchten jetzt, die monomeren Iminoborane $t\mathbf{Bu} - \mathbf{B} \equiv \mathbf{N} - \mathbf{R}$ ($\mathbf{R} = t\mathbf{Bu}$: $\mathbf{1a}^{[2]}$; $\mathbf{R} = \mathbf{Mes}$: $\mathbf{1b}^{[3]}$) mit den Stannylenen $\mathbf{2a} - \mathbf{d}$ und mit den cyclischen Stannylenen $\mathbf{3a} - \mathbf{c}$ umzusetzen und hofften dabei, daß diese mit Ausnahme von $\mathbf{3b}$ und $\mathbf{3c}$ wohl auch in Lösung weitgehend dimerisierten Moleküle sich in der Bruttoreaktion wie Monomere verhielten, sei es im Rahmen eines Monomerisierungs-Gleichgewichts oder einer Monomeren-Abspaltung aus dem aktivierten Komplex aus 1 und dem Dimeren.

Im allgemeinen führten solche 1:1-Umsetzungen in Hexan bei ca. -50 °C zu 1:1-Addukten aus 1 und 2 bzw. 3, wie sich am Verschwinden der NMR-Signale der Ausgangsstoffe im Maße der Bildung von Produktsignalen feststellen ließ. Beim Erwärmen auf Raumtemperatur oder spätestens beim Versuch, feste Reinstoffe zu gewinnen, zerfielen die Addukte jedoch mehr oder weniger rasch, und man isolierte schließlich die bekannten Cyclodimeren (*t*BuBNR)₂ der eingesetzten Iminoborane^[2,3]. Mit drei Stannylenen ließen sich auch in Lösung keine Addukte NMR-spektroskopisch beobachten, nämlich mit 2a, 2c und 3c. Insbesondere die Stannylene 2a und 2c katalysierten die Cyclodimerisierung von 1a, die hier schon – selbst im starken Unterschuß des $P2_1/n$). The cyclic diaminostannylene $[-Sn-N(tBu)-SiMe_2-N(tBu)-]$ (3b), instead, simply adds the boranes 1a,b across one of its Sn-N bonds to form the bicyclo[2.2.0]hexene-type products 5a,b.

jeweiligen Stannylens – bei 0°C nach 1 h vollständig war, während 1a ohne Katalysator bei 0°C wochenlang haltbar ist. In vier Fällen jedoch wurden feste 1:1-Addukte aus Iminoboran und Stannylen isoliert und charakterisiert, nämlich bei der Umsetzung von 2b mit 1a,b [Gl. (1)] und von 3b mit 1a,b [Gl. (2)].

Die Struktur von 4b im Kristall ergibt sich aus einer Röntgenstrukturanalyse (Abb. 1, Tab. 1). Es handelt sich um das Produkt einer *cis*-Aminostannierung an die Dreifachbindung von 1b. Die Atome B, N1, N2, N3 sind planar koordiniert. Die Ebenen Si1 – N2 – Si2 und N1 – B – C5 stehen nahezu senkrecht aufeinander (84.2°), wohingegen die Ebenen N2 – B – C5 und Sn – N1 – C6 nahezu koplanar angeordnet sind (13.1°). Als Folge davon ist eine π -Bindung zwischen B und N1, nicht aber zwischen B und N2 möglich, was sich in den unterschiedlichen Bindungsabständen B – N1 und B – N2 von 142 bzw. 152 pm ausdrückt. Die planare Koordination von N2 und N3 wird auch ohne p π – p π -Bindungen durch die Nachbarschaft der elektro-

Chem. Ber. 1992, 125, 1079-1081 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1992 0009-2940/92/0505-1079 \$ 3.50+.25/0

positiven Elemente B, Si bzw. Sn in bekannter Weise ermöglicht. Die Ebene der Mesitylgruppe ist gegen die Ebene B-N1-Sn um fast einen rechten Winkel geneigt (78.5°). Die Ebenen Si3-N3-Si4 und N1-Sn-N3 bilden einen Winkel von 69.6°.

Abb. 1. Molekülstruktur von **4b** (Ellipsoide mit 50% der Aufenthaltswahrscheinlichkeit der Elektronen). Ausgewählte Abstände und Winkel ([Å] bzw. [°], Standardabweichungen in Klammern): B-N1 142(1), B-N2 152(1), B-C5 161(1), Sn-N1 215.6(5), Sn-N3 212.0(6), N1-C6 145.5(8), N2-Si1 174.8(6), N2-Si2 174.3(6), N3-Si3 172.8(6), N3-Si4 171.2(6). - N1-B-N2 116.5(7), N1-B-C5 125.3(7), N2-B-C5 118.2(6), B-N1-Sn 113.9(5), B-N1-C6 125.4(6), Sn-N1-C6 120.0(5), B-N2-Si1 118.6(5), B-N2-Si2 121.8(5), Si1-N2-Si2 119.2(3), Sn-N3-Si3 114.8(4), Sn-N3-Si4 119.1(4), Si3-N3-Si4 125.0(4), N1-Sn-N3 106.0(2)

In Lösung erweisen sich im Falle von 4b die o-Methylgruppen von Mes den ¹H- und ¹³C-NMR-Spektren zufolge als äquivalent, entweder als Folge einer Senkrechtstellung von Mes zur Molekül-Hauptebene, in der eine Spiegelebene verläuft, oder als Folge unbehinderter Rotation um die Achse N1-C6. Drei Signale im Verhältnis 2:1:1 für vier Me₃Si-Gruppen lassen sich am besten mit der N3-Aminogruppe in Orthogonalstellung zur Spiegelebene und damit äquivalenten Signalgruppen und einer entsprechenden coplanaren N2-Aminogruppe verstehen, die gegenüber der NMR-Zeitskala rotationsfest ist. Die Orthogonalstellung dieser N2-Aminogruppe im Kristall muß dann dort auf intermolekulare Wechselwirkungen zurückgeführt werden. -Im Gegensatz zu 4b erkennt man in den NMR-Spektren von 4a eine paarweise Äquivalenz der vier Me₃Si-Gruppen. Möglicherweise erzwingen in 4a sterische Erfordernisse für beide Aminogruppen eine Orthogonalstellung zur Molekül-Hauptebene.

Mit der für 5a, b vorgeschlagenen Konstitution steht der NMR-Befund von vier bzw. drei nicht-äquivalenten *t*Bu-Gruppen in Übereinstimmung. Die C_1 -Symmetrie beider Moleküle dokumentiert sich in nichtäquivalenten Me-Gruppen der Baueinheit SiMe₂ und im Falle von **5b** auch der *o*-Me-Gruppen von Mes. Läge statt eines bicyclischen dachartig aufgebauten Systems ein entsprechender Sechsring vor, wie man ihn bei einer schematischen Übertragung der Aminostannierungsreaktion (1) unter Öffnung einer Sn – N-Bindung erwarten könnte, so sollte die Sechsringebene – zumindestens im zeitlichen Mittel eventueller konformativer Ringfluktuationen – Spiegelebenenfunktion ausüben und die genannten Me-Gruppen äquivalent erscheinen lassen. Tatsächlich weichen sterisch überladene planare Sechsringe ganz allgemein dem Druck der Liganden dadurch aus, daß sie in bicyclische Systeme vom Typ des Bicyclo[2.2.0]hexans übergehen, also z.B. Tetra-tert-butylbis(methoxycarbonyl)benzol in das entsprechende Dewar-Benzol^[12] oder 1,3,5-Tri-tert-butyl-2,4,6-triisopropylborazin in das entsprechende Dewar-Borazin^[13]. Daß eine der Sn-N-Bindungen der cyclischen Stannylene 3 zu Cycloadditionen bereitsteht, lehrt insbesondere die Verbindung 3b, die – in Lösung monomer - im Kristall über die Sn-N-Bindung z.T. zu tricyclischen Molekülen dimerisiert. In der ausschließlich dimer anfallenden Verbindung 3d mit ihrem Skelett vom anti-Tricyclo-[4.2.0.0^{2,5}]cycloocta-3,7-dien-Typ liegen zwei B-N-Sn-N-Vierringe von genau derselben Art vor, wie sie durch die eine Hälfte von 5a, b repräsentiert wird, während die andere Hälfte, der Si-N-Sn-N-Vierring, in den dimeren Verbindungen 3a, b ihr Vorbild findet.

Wir haben mit Reaktion (1) eine Aminostannierung durch ein Diaminostannylen aufgefunden, wie sie gewöhnlich von Aminostannanen gegeben wird^[14]. Bei den Aminostannierungsprodukten 4a, b handelt es sich wieder um Diaminostannylene, diesmal mit zwei verschiedenen Aminogruppen, von denen zumindest 4b auch im Kristall monomer bleibt. Die neu gebildete Aminogruppe in 4a, b schirmt das Sn-Atom noch stärker ab als die substituierte Aminogruppe N(SiMe₃)₂ in **2b**. Im Gegensatz zu den Silylenen erfahren die Stannylene 2b, 3b durch Iminoborane keine oxidative Addition, sondern im Falle von 2b die Substitution einer Aminogruppe, im Falle von 3b eine Koordination am Sn- und am N-Atom, ohne daß Zinn seine Oxidationszahl +2 erhöht. Auch wenn die Reaktionen der Iminoborane mit Diorganosilylenen einerseits^[1] und mit Diaminostannylenen andererseits wegen der unterschiedlichen Liganden nicht unmittelbar verglichen werden können, sind die erzielten Befunde doch für die Elemente der 4. Hauptgruppe typisch, da sie den bekannten Gang der Stabilität zweiwertiger gegenüber vierwertigen Derivaten dieser Elemente unterstreichen.

Experimenteller Teil

NMR: Bruker WP 80 SY (¹H), Jeol JNM-PS-100 (¹¹B), Bruker WH 270 (¹³C), in C₆D₆. – C, H, N: Carlo-Erba-Elemental-Analyser 1106. – Alle Substanzen müssen in Wasser- und Sauerstoff-freien Medien gehandhabt werden.

[Bis(trimethylsilyl)amino][{[bis(trimethylsilyl)amino]-tert-butylboryl]-tert-butylamino]stannylen (4a): Zu 3.1 g (7.1 mmol) $2b^{[5,6]}$ in 15 ml Hexan gibt man bei $-5 \,^{\circ}$ C eine auf $-5 \,^{\circ}$ C gekühlte Lösung von 1.0 g (7.2 mmol) $1a^{[2]}$ in 5 ml Hexan und rührt 2 h bei $-5 \,^{\circ}$ C. Nach Entfernen der flüchtigen Reaktionsanteile i. Vak. erbringt eine dreimalige Kristallisation aus Pentan bei $-30 \,^{\circ}$ C 1.2 g (29%) gelbes 2b, Schmp. 71 $\,^{\circ}$ C. $-^{1}$ H-NMR: $\delta = 0.39, 0.47$ (2 s; je 18H, SiMe₃), 1.16, 1.40 (2 s; je 9H, tBu). $-^{11}$ B-NMR: $\delta = 40.8. -^{13}$ C-NMR: $\delta = 5.8$ (q; SiMe₃), 30.6, 33.9 (2 q; tBu), 53.5 (s; NtBu).

 $\begin{array}{rl} C_{20}H_{54}BN_{3}Si_{4}Sn~(578.5) & \mbox{Ber. C}~41.52~H~9.41~N~7.26\\ & \mbox{Gef. C}~40.06~H~9.32~N~6.92 \end{array}$

[Bis(trimethylsilyl)amino][{[bis(trimethylsilyl)amino]-tert-butylboryl]mesitylamino]stannylen (4b): Aus 3.5 g (10.7 mmol) tert-

Butylchlor[mesityl(trimethylsilyl)amino]boran gewinnt man nach bekannter Vorschrift^[3] das Iminoboran 1b, das man vollständig von Me₃SiCl befreit, bei -50 °C in 5 ml Pentan löst und die Lösung aus einem auf -50°C gekühlten Tropftrichter zu 4.0 g (9.1 mmol) **2b** in 10 ml Pentan/Diethylether (4:1) von -40° C tropft. Man rührt 1 h bei -40°C und 2 h bei Raumtemp. Die flüchtigen Anteile der roten Lösung werden i. Vak. entfernt. Wie bei 4a erhält man aus Pentan 3.1 g (53%) rotes 4b, Schmp. 90°C. - ¹H-NMR: $\delta =$ 0.07, 0.28, 0.36 (3 s im Verhältnis 1:2:1; 36H, SiMe₃), 0.92 (s; 9H, tBu), 2.18 (s; 3H, p-Me), 2.44 (s; 6H, o-Me), 6.80 (s; 2H, m-H). -¹¹B-NMR: $\delta = 43.2. - {}^{13}$ C-NMR: $\delta = 5.1, 5.4, 5.8$ (3 q; SiMe₃), 20.5, 22.9 (2 q; o-Me, p-Me), 30.2 (q; tBu), 128.9 (d; m-C), 129.6, 132.9, 145.9 (3 s; i-, o-, p-C).

$C_{25}H_{56}BN_3Si_4Sn$ (640.6) Ber. C 46.87 H 8.81 N 6.56 Gef. C 44.54 H 9.14 N 6.43

1,3,5,6-Tetra-tert-butyl-2,2-dimethyl-1,3-diaza-5-azonia-2-sila-4stanna-6-boratabicyclo[2.2.0]cyclohexa-5-en (5a): Zu einer auf -50°C gekühlten Lösung von 1.0 g (7.2 mmol) 1a in 10 ml Hexan gibt man 2.3 g (7.2 mmol) 3b in 10 ml Hexan und läßt 1 h bei -50°C rühren. Dann bringt man die Lösung auf Raumtemp. und engt i. Vak. ein, bis ein gelbes Öl zurückbleibt. Dieses läßt sich aus Pentan bei - 30 °C zu 1.9 g (58%) festem, gelbem 5a kristallisieren, Schmp. 36 °C. – ¹H-NMR (CDCl₃, -30 °C): $\delta = 0.19, 0.38$ (2 s; je 3H, SiMe₂), 1.08, 1.15, 1.34, 1.40 (4 s; je 9H, tBu). – ¹¹B-NMR: $\delta = 39.0. - {}^{13}\text{C-NMR}; \delta = 9.9, 11.0 (2 \text{ q}; \text{SiMe}_2), 33.2, 34.0, 35.4,$ 36.4 (4 q; tBu), 51.4, 52.5, 53.5 (3 s; NtBu).

C₁₈H₄₂BN₃SiSn (458.2) Ber. C 47.19 H 9.24 N 9.17 Gef. C 46.70 H 8.82 N 9.47

1,3,6-Tri-tert-butyl-5-mesityl-2,2-dimethyl-1,3-diaza-5-azonia-2sila-4-stanna-6-boratabicyclo/2.2.0/cyclohexa-5-en (5b): Das Iminoboran 1b gewinnt man aus 2.0 g (6.1 mmol) des entsprechenden Aminoborans in derselben Weise wie bei 4b und legt es in 10 ml Hexan bei -50° C vor. Man gibt 1.7 g (5.3 mmol) **2b** in 10 ml Hexan zu, rührt 1 h bei - 50°C, entfernt die flüchtigen Reaktionsanteile i. Vak. und gewinnt aus dem Rückstand durch zweimaliges Kristallisieren aus Hexan/Toluol (1:2) bei - 30°C 1.6 g (58%) gelbes **5b**, Schmp. 66°C. - ¹H-NMR: $\delta = 0.48$, 0.52 (2 s; je 3 H, SiMe₂), 1.03, 1.18, 1.37 (3 s; je 9H, tBu), 2.21 (s; 3H, p-Me), 2.44, 2.47 (2 s; je 3H, o-Me), 6.87 (s; 2H, m-H). - ¹¹B-NMR: $\delta = 37.5$. $- {}^{13}$ C-NMR: $\delta = 9.9$, 10.4 (g; SiMe₂), 20.7, 21.0, 21.7 (3 g; o-Me, p-Me), 30.6, 33.9, 36.0 (3 q; tBu), 51.7, 53.7 (2 s; NtBu), 129.3, 130.8, 131.6 (3 s; i-, o-, p-C), 145.6 (d; m-C).

C₂₃H₄₄BN₃SiSn (520.2) Ber. C 53.10 H 8.52 N 8.08 Gef. C 52.41 H 8.65 N 7.73

Röntgenstrukturanalyse von **4b**: Kristallgröße $0.6 \times 0.3 \times 0.3$ mm³. Meßtemperatur 20°C. Diffraktometer Enraf-Nonius CAD 4. Mo- K_{α} -Strahlung. Zelldimension a = 916.4(4), b = 2303.4(7), c =1656(1) pm, $\beta = 91.85(5)$, V = 3.494(5) nm³, $D_{ber} = 1.218$ g/cm³, $\mu = 8.85 \text{ cm}^{-1}$, Z = 4. Raumgruppe $P2_1/n$ (Nr. 14). 2759 Reflexe mit $l > 3\sigma(l)$, im Quadranten $+h + k \pm l$ der Ewald-Kugel, 3° $< \Theta < 23^{\circ}$, 2815 unabhängige Reflexe mit $I > 2\sigma(I)$ in Verfeinerung, 308 verfeinerte Parameter. Strukturlösung mit direkten Methoden (MULTAN). Anisotrope Verfeinerung für alle Nicht-H-Atome. Empirische Absorptionskorrektur (max. Transmission 0.999, min. Transmission 0.714). Extinktionskorrektur mit sek. Extinktionskoeffizienten 1.36 · 10^{-7} . R = 0.06, $R_w = 0.058$ mit $w^* =$ $\sigma(F_0)^{-2}$. Restelektronendichte 1.3 e/Å³ (nahe dem Sn-Atom). Tab. 1 enthält die Atomkoordinaten. Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationzentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56181, der Autorennamen und des Zeitschriftenzitats angefordert werden.

Tab. 1. Atomkoordinaten (\times 10⁴) und äquivalente isotrope thermische Parameter $B [A^2]$ von **4b**

xyzBB9654(12) $2742(4)$ 7595(6) $3.0(2)$ N19439(7) $3351(3)$ 7610(4) $2.8(2)$ N210326(7) $2494(3)$ $6842(4)$ $2.9(2)$ N3 $8882(8)$ 4616(3) $6594(4)$ $3.7(2)$ Sn9634.9(9) $3763.4(3)$ $6450.2(4)$ $4.03(1)$ Si112228(3) $2468(1)$ $6797(2)$ $3.89(6)$ Si29261(3) $2183(1)$ $6066(2)$ $4.00(7)$ Si37335(4) $4800(1)$ $6020(2)$ $5.03(8)$ Si49983(4) $5118(1)$ 7093(2) $4.90(8)$ C59240(10)2299(4) $8305(5)$ $3.8(2)$ C68900(10) $3680(3)$ $8290(5)$ $3.2(2)$ C1113150(10) $2463(5)$ $7810(7)$ $6.3(3)$ C1213040(10) $3102(5)$ $6260(7)$ $6.6(3)$ C1312860(10) $1805(5)$ $6272(8)$ $8.4(4)$ C219260(10) $1373(4)$ $6040(7)$ $6.8(3)$ C229880(10) $2423(5)$ $5044(6)$ $7.3(3)$ C33 $6620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C41 $10420(20)$ $5781(5)$ $6455(8)$ $9.2(4)$ C33 $6620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C41 $10420(20)$ $5781(5)$ $9141(6)$ $9.6(4)$ C52 $7590(10)$ $2283(6)$ $8391(8)$ 10.044 C53 $9750(20)$ $1688(4)$ $8168(7)$ <t< th=""><th>-</th><th></th><th></th><th></th><th></th></t<>	-				
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		x	у	Z	В
N1 $9439(7)$ $3351(3)$ $7610(4)$ $2.8(2)$ N2 $10326(7)$ $2494(3)$ $6842(4)$ $2.9(2)$ N3 $8882(8)$ $4616(3)$ $6594(4)$ $3.7(2)$ Sn $9634.9(9)$ $3763.4(3)$ $6450.2(4)$ $4.03(1)$ Si1 $12228(3)$ $2468(1)$ $6797(2)$ $3.89(6)$ Si2 $9261(3)$ $2183(1)$ $6066(2)$ $4.00(7)$ Si3 $7335(4)$ $4800(1)$ $6020(2)$ $5.03(8)$ Si4 $9983(4)$ $5118(1)$ $7093(2)$ $4.90(8)$ C5 $9240(10)$ $2299(4)$ $8305(5)$ $3.8(2)$ C6 $8900(10)$ $3680(3)$ $8290(5)$ $3.2(2)$ C11 $13150(10)$ $2463(5)$ $7810(7)$ $6.3(3)$ C12 $13040(10)$ $3102(5)$ $6260(7)$ $6.6(3)$ C13 $12860(10)$ $1805(5)$ $6272(8)$ $8.3(4)$ C14 $1920(10)$ $1373(4)$ $6040(7)$ $6.8(3)$ C22 $9880(10)$ $2403(5)$ $6135(6)$ $6.3(3)$ C23 $7330(10)$ $2403(5)$ $6135(6)$ $6.3(3)$ C31 $5850(10)$ $5078(5)$ $6653(8)$ $7.9(4)$ C32 $7670(10)$ $536(5)$ $5223(7)$ $8.0(4)$ C33 $6620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C51 $9830(20)$ $2451(5)$ $9141(6)$ $9.6(4)$	в	9654(12)	2742(4)	7595(6)	3.0(2)
N2 $10326(7)$ $2494(3)$ $6842(4)$ $2.9(2)$ N3 $8882(8)$ $4616(3)$ $6594(4)$ $3.7(2)$ Sn $9634.9(9)$ $3763.4(3)$ $6450.2(4)$ $4.03(1)$ Si1 $12228(3)$ $2468(1)$ $6797(2)$ $3.89(6)$ Si2 $9261(3)$ $2183(1)$ $6066(2)$ $4.00(7)$ Si3 $7335(4)$ $4800(1)$ $6020(2)$ $5.03(8)$ Si4 $9983(4)$ $5118(1)$ $7093(2)$ $4.90(8)$ C5 $9240(10)$ $2299(4)$ $8305(5)$ $3.8(2)$ C6 $8900(10)$ $3680(3)$ $8290(5)$ $3.2(2)$ C11 $13150(10)$ $2463(5)$ $7810(7)$ $6.3(3)$ C12 $13040(10)$ $3102(5)$ $6260(7)$ $6.6(3)$ C13 $12860(10)$ $1805(5)$ $6272(8)$ $8.3(4)$ C21 $9260(10)$ $1373(4)$ $6040(7)$ $6.8(3)$ C22 $980(10)$ $2423(5)$ $5044(6)$ $7.3(3)$ C23 $7330(10)$ $2403(5)$ $6135(6)$ $6.3(3)$ C33 $620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C41 $10420(20)$ $5781(5)$ $6455(8)$ $9.2(4)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C43 $11770(10)$ $4762(5)$ $7315(7)$ $6.8(3)$ C53 $9750(20)$ $1688(4)$ $8168(7)$ $10.9(4)$ C54 $9280(10)$ $3280(3)$ $8906(5)$ $3.6(2)$ C61 $9850(10)$ $3880(3)$ $8906(5)$ 3.6	Nl	9439(7)	3351(3)	7610(4)	2.8(2)
N3 $8882(8)$ $4616(3)$ $6594(4)$ $3.7(2)$ Sn $9634.9(9)$ $3763.4(3)$ $6450.2(4)$ $4.03(1)$ Si1 $1228(3)$ $2468(1)$ $6797(2)$ $3.89(6)$ Si2 $9261(3)$ $2183(1)$ $6066(2)$ $4.00(7)$ Si3 $7335(4)$ $4800(1)$ $6020(2)$ $5.03(8)$ Si4 $9983(4)$ $5118(1)$ $7093(2)$ $4.90(8)$ C5 $9240(10)$ $2299(4)$ $8305(5)$ $3.8(2)$ C6 $8900(10)$ $3680(3)$ $8290(5)$ $3.2(2)$ C11 $13150(10)$ $2463(5)$ $7810(7)$ $6.3(3)$ C12 $13040(10)$ $3102(5)$ $6260(7)$ $6.6(3)$ C13 $12860(10)$ $1805(5)$ $6272(8)$ $8.3(4)$ C21 $9260(10)$ $1373(4)$ $6040(7)$ $6.8(3)$ C22 $9880(10)$ $2423(5)$ $5044(6)$ $7.3(3)$ C31 $5850(10)$ $5078(5)$ $6653(8)$ $7.9(4)$ C32 $7670(10)$ $5366(5)$ $5223(7)$ $8.0(4)$ C32 $7670(10)$ $5366(4)$ $8037(6)$ $6.6(3)$ C41 $10420(20)$ $5781(5)$ $6455(8)$ $9.2(4)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C43 $11770(10)$ $4762(5)$ $7315(7)$ $6.8(3)$ C43 $11770(10)$ $3736(4)$ $8927(6)$ $5.1(2)$ C64 $980(10)$ $3880(3)$ $8906(5)$ $3.6(2)$ C62 $7590(10)$ $2283(6)$ $8391(8)$ 10	N2	10326(7)	2494(3)	6842(4)	2.9(2)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N3	8882(8)	4616(3)	6594(4)	3.7(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn	9634.9(9)	3763.4(3)	6450.2(4)	4.03(1)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Si1	12228(3)	2468(1)	6797(2)	3.89(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si2	9261(3)	2183(1)	6066(2)	4.00(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si3	7335(4)	4800(1)	6020(2)	5.03(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si4	9983(4)	5118(1)	7093(2)	4.90(8)
C6 $8900(10)$ $3680(3)$ $8290(5)$ $3.2(2)$ C11 $13150(10)$ $2463(5)$ $7810(7)$ $6.3(3)$ C12 $13040(10)$ $3102(5)$ $6260(7)$ $6.6(3)$ C13 $12860(10)$ $1805(5)$ $6272(8)$ $8.3(4)$ C21 $9260(10)$ $1373(4)$ $6040(7)$ $6.8(3)$ C22 $9880(10)$ $2423(5)$ $5044(6)$ $7.3(3)$ C23 $7330(10)$ $2403(5)$ $6135(6)$ $6.3(3)$ C31 $5850(10)$ $5078(5)$ $6653(8)$ $7.9(4)$ C32 $7670(10)$ $5366(5)$ $5223(7)$ $8.0(4)$ C33 $6620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C41 $10420(20)$ $5781(5)$ $6455(8)$ $9.2(4)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C41 $10420(20)$ $5781(5)$ $9141(6)$ $9.6(4)$ C52 $7590(10)$ $2283(6)$ $8391(8)$ $10.0(4)$ C51 $9830(20)$ $2451(5)$ $9141(6)$ $9.6(4)$ C52 $7590(10)$ $2283(6)$ $8391(8)$ $10.0(4)$ C53 $9750(20)$ $1688(4)$ $8168(7)$ $10.9(4)$ C61 $9850(10)$ $3880(3)$ $8906(5)$ $3.6(2)$ C62 $11450(10)$ $3736(4)$ $8927(6)$ $5.1(2)$ C63 $9280(10)$ $4204(4)$ $9533(5)$ $4.6(2)$ C64 $7840(10)$ $4340(4)$ $9573(5)$ $4.6(2)$ C65 $7270(10)$ $4718(5)$ $10250(6)$	C5	9240(10)	2299(4)	8305(5)	3.8(2)
C1113150(10) $2463(5)$ $7810(7)$ $6.3(3)$ C1213040(10) $3102(5)$ $6260(7)$ $6.6(3)$ C1312860(10)1805(5) $6272(8)$ $8.3(4)$ C21 $9260(10)$ 1373(4) $6040(7)$ $6.8(3)$ C22 $9880(10)$ $2423(5)$ $5044(6)$ $7.3(3)$ C33 $7330(10)$ $2403(5)$ $6135(6)$ $6.3(3)$ C31 $5850(10)$ $5078(5)$ $6653(8)$ $7.9(4)$ C32 $7670(10)$ $5366(5)$ $5223(7)$ $8.0(4)$ C33 $6620(10)$ $4139(5)$ $5461(7)$ $6.9(3)$ C41 $10420(20)$ $5781(5)$ $6455(8)$ $9.2(4)$ C42 $9210(10)$ $5396(4)$ $8037(6)$ $6.6(3)$ C43 $11770(10)$ $4762(5)$ $7315(7)$ $6.8(3)$ C51 $9830(20)$ $2451(5)$ $9141(6)$ $9.6(4)$ C52 $7590(10)$ $2283(6)$ $8391(8)$ $10.0(4)$ C53 $9750(20)$ $1688(4)$ $8168(7)$ $10.9(4)$ C61 $9850(10)$ $3280(3)$ $8906(5)$ $3.6(2)$ C62 $11450(10)$ $3736(4)$ $8927(6)$ $5.1(2)$ C63 $9280(10)$ $4204(4)$ $9534(5)$ $4.4(2)$ C64 $7840(10)$ $4340(4)$ $9573(5)$ $4.6(2)$ C65 $7270(10)$ $4718(5)$ $10250(6)$ $6.8(3)$ C66 $6920(10)$ $4160(4)$ $8949(6)$ $4.3(2)$ C67 $7420(10)$ $3825(4)$ $8307(5)$ $3.9(2)$ </td <td>C6</td> <td>8900(10)</td> <td>3680(3)</td> <td>8290(5)</td> <td>3.2(2)</td>	C6	8900(10)	3680(3)	8290(5)	3.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	13150(10)	2463(5)	7810(7)	6.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12	13040(10)	3102(5)	6260(7)	6.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C13	12860(10)	1805(5)	6272(8)	8.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21	9260(10)	1373(4)	6040(7)	6.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22	9880(10)	2423(5)	5044(6)	7.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23	7330(10)	2403(5)	6135(6)	6.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31	5850(10)	5078(5)	6653(8)	7.9(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32	7670(10)	5366(5)	5223(7)	8.0(4)
$\begin{array}{ccccccc} C41 & 10420(20) & 5781(5) & 6455(8) & 9.2(4) \\ C42 & 9210(10) & 5396(4) & 8037(6) & 6.6(3) \\ C43 & 11770(10) & 4762(5) & 7315(7) & 6.8(3) \\ C51 & 9830(20) & 2451(5) & 9141(6) & 9.6(4) \\ C52 & 7590(10) & 2283(6) & 8391(8) & 10.0(4) \\ C53 & 9750(20) & 1688(4) & 8168(7) & 10.9(4) \\ C61 & 9850(10) & 3880(3) & 8906(5) & 3.6(2) \\ C62 & 11450(10) & 3736(4) & 8927(6) & 5.1(2) \\ C63 & 9280(10) & 4204(4) & 9534(5) & 4.4(2) \\ C64 & 7840(10) & 4340(4) & 9573(5) & 4.6(2) \\ C65 & 7270(10) & 4718(5) & 10250(6) & 6.8(3) \\ C66 & 6920(10) & 4160(4) & 8949(6) & 4.3(2) \\ C67 & 7420(10) & 3825(4) & 8307(5) & 3.9(2) \\ C68 & 6340(10) & 3631(4) & 7671(6) & 4.5(2) \\ \end{array}$	C33	6620(10)	4139(5)	5461(7)	6.9(3)
C42 9210(10) 5396(4) 8037(6) 6.6(3) C43 11770(10) 4762(5) 7315(7) 6.8(3) C51 9830(20) 2451(5) 9141(6) 9.6(4) C52 7590(10) 2283(6) 8391(8) 10.0(4) C53 9750(20) 1688(4) 8168(7) 10.9(4) C61 9850(10) 3880(3) 8906(5) 3.6(2) C62 11450(10) 3736(4) 8927(6) 5.1(2) C63 9280(10) 4204(4) 9534(5) 4.4(2) C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C41	10420(20)	5781(5)	6455(8)	9.2(4)
C43 11770(10) 4762(5) 7315(7) 6.8(3) C51 9830(20) 2451(5) 9141(6) 9.6(4) C52 7590(10) 2283(6) 8391(8) 10.0(4) C53 9750(20) 1688(4) 8168(7) 10.9(4) C61 9850(10) 3880(3) 8906(5) 3.6(2) C62 11450(10) 3736(4) 8927(6) 5.1(2) C63 9280(10) 4204(4) 9534(5) 4.4(2) C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C42	9210(10)	5396(4)	8037(6)	6.6(3)
C51 9830(20) 2451(5) 9141(6) 9.6(4) C52 7590(10) 2283(6) 8391(8) 10.0(4) C53 9750(20) 1688(4) 8168(7) 10.9(4) C61 9850(10) 3880(3) 8906(5) 3.6(2) C62 11450(10) 3736(4) 8927(6) 5.1(2) C63 9280(10) 4204(4) 9534(5) 4.4(2) C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C43	11770(10)	4762(5)	7315(7)	6.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51	9830(20)	2451(5)	9141(6)	9.6(4)
C53 9750(20) 1688(4) 8168(7) 10.9(4) C61 9850(10) 3880(3) 8906(5) 3.6(2) C62 11450(10) 3736(4) 8927(6) 5.1(2) C63 9280(10) 4204(4) 9534(5) 4.6(2) C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C52	7590(10)	2283(6)	8391(8)	10.0(4)
C619850(10)3880(3)8906(5)3.6(2)C6211450(10)3736(4)8927(6)5.1(2)C639280(10)4204(4)9534(5)4.4(2)C647840(10)4340(4)9573(5)4.6(2)C657270(10)4718(5)10250(6)6.8(3)C666920(10)4160(4)8949(6)4.3(2)C677420(10)3825(4)8307(5)3.9(2)C686340(10)3631(4)7671(6)4.5(2)	C53	9750(20)	1688(4)	8168(7)	10.9(4)
C62 11450(10) 3736(4) 8927(6) 5.1(2) C63 9280(10) 4204(4) 9534(5) 4.4(2) C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C61	9850(10)	3880(3)	8906(5)	3.6(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C62	11450(10)	3736(4)	8927(6)	5.1(2)
C64 7840(10) 4340(4) 9573(5) 4.6(2) C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C63	9280(10)	4204(4)	9534(5)	4.4(2)
C65 7270(10) 4718(5) 10250(6) 6.8(3) C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C64	7840(10)	4340(4)	9573(5)	4.6(2)
C66 6920(10) 4160(4) 8949(6) 4.3(2) C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C65	7270(10)	4718(́5)	10250(6)	6.8(3)
C67 7420(10) 3825(4) 8307(5) 3.9(2) C68 6340(10) 3631(4) 7671(6) 4.5(2)	C66	6920(10)	4160(4)	8949(6)	4.3(2)
C68 6340(10) 3631(4) 7671(6) 4.5(2)	C67	7420(10)	3825(4)	8307(5)	3.9(2)
	C68	6340(10)	3631(4)	7671(6)	4.5(2)

CAS-Registry-Nummern

1a: 89786-99-2 / 1b: 118331-72-9 / 2b: 55147-78-9 / 3b: 54724-62-8 / 4a: 139495-45-7 / 4b: 139495-46-8 / 5a: 139495-47-9 / 5b: 139495-48-0

- ^[1] P. Paetzold, D. Hahnfeld, U. Englert, W. Wojnowski, B. Dreczewski, Z. Pawelec, L. Walz, Chem. Ber. 1992, 125, 1073-1078, voranstehend.
- ^[2] P. Paetzold, C. von Plotho, G. Schmid, R. Boese, B. Schrader, D. Bougeard, U. Pfeiffer, R. Gleiter, W. Schäfer, Chem. Ber. 1984, 117, 1089-1102.
- ^[3] K.-H. van Bonn, T. von Benningsen-Mackiewicz, J. Kiesgen, C. von Plotho, P. Paetzold, Z. Naturforsch., Teil B, 1988, 43, 61 - 68.
- ^[4] W.-W. duMont, M. Grenz, Chem. Ber. 1985, 118, 1045-1049.
- ^[5] D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun. **1974**, 895-896.
- ^[6] C. D. Schaeffer, Jr., J. J. Zuckerman, J. Am. Chem. Soc. 1974, 96, 7160-7162.
- ¹⁷ D. E. Goldberg, D. H. Harris, M. F. Lappert, K. M. Thomas, J. Chem. Soc., Chem. Commun. **1976**, 261–262. ^[8] M. Veith, Z. Naturforsch., Teil B, **1978**, 37, 1–6.
- ^[9] M. Veith, Angew. Chem. 1975, 87, 287-288; Angew. Chem. Int. Ed. Engl. 1975, 14, 263.
- ^[10] D. Hänssgen, J. Kuna, B. Ross, Chem. Ber. 1976, 109, 1797-1802.
- ^[11] H. Fußstetter, H. Nöth, Chem. Ber. 1979, 112, 3672-3681.
- [12] G. Maier, K.-A. Schneider, Angew. Chem. 1980, 92, 1056-1057;
 Angew. Chem. Int. Ed. Engl. 1980, 19, 1022.
- ^[13] P. Paetzold, C. von Plotho, G. Schmid, R. Boese, Z. Naturforsch., Teil B, 1984, 39, 1069 1075.
- ^[14] M. F. Lappert, B. Prokai, Adv. Organomet. Chem. 1967, 5, 225 - 319.

[470/91]